Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D368-D375, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933859

RESUMO

The AlphaFold Database Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) has significantly impacted structural biology by amassing over 214 million predicted protein structures, expanding from the initial 300k structures released in 2021. Enabled by the groundbreaking AlphaFold2 artificial intelligence (AI) system, the predictions archived in AlphaFold DB have been integrated into primary data resources such as PDB, UniProt, Ensembl, InterPro and MobiDB. Our manuscript details subsequent enhancements in data archiving, covering successive releases encompassing model organisms, global health proteomes, Swiss-Prot integration, and a host of curated protein datasets. We detail the data access mechanisms of AlphaFold DB, from direct file access via FTP to advanced queries using Google Cloud Public Datasets and the programmatic access endpoints of the database. We also discuss the improvements and services added since its initial release, including enhancements to the Predicted Aligned Error viewer, customisation options for the 3D viewer, and improvements in the search engine of AlphaFold DB.


The AlphaFold Protein Structure Database (AlphaFold DB) is a massive digital library of predicted protein structures, with over 214 million entries, marking a 500-times expansion in size since its initial release in 2021. The structures are predicted using Google DeepMind's AlphaFold 2 artificial intelligence (AI) system. Our new report highlights the latest updates we have made to this database. We have added more data on specific organisms and proteins related to global health and expanded to cover almost the complete UniProt database, a primary data resource of protein sequences. We also made it easier for our users to access the data by directly downloading files or using advanced cloud-based tools. Finally, we have also improved how users view and search through these protein structures, making the user experience smoother and more informative. In short, AlphaFold DB has been growing rapidly and has become more user-friendly and robust to support the broader scientific community.


Assuntos
Inteligência Artificial , Estrutura Secundária de Proteína , Proteoma , Sequência de Aminoácidos , Bases de Dados de Proteínas , Ferramenta de Busca , Proteínas/química
2.
NPJ Digit Med ; 5(1): 4, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027658

RESUMO

Prolonged non-contact camera-based monitoring in critically ill patients presents unique challenges, but may facilitate safe recovery. A study was designed to evaluate the feasibility of introducing a non-contact video camera monitoring system into an acute clinical setting. We assessed the accuracy and robustness of the video camera-derived estimates of the vital signs against the electronically-recorded reference values in both day and night environments. We demonstrated non-contact monitoring of heart rate and respiratory rate for extended periods of time in 15 post-operative patients. Across day and night, heart rate was estimated for up to 53.2% (103.0 h) of the total valid camera data with a mean absolute error (MAE) of 2.5 beats/min in comparison to two reference sensors. We obtained respiratory rate estimates for 63.1% (119.8 h) of the total valid camera data with a MAE of 2.4 breaths/min against the reference value computed from the chest impedance pneumogram. Non-contact estimates detected relevant changes in the vital-sign values between routine clinical observations. Pivotal respiratory events in a post-operative patient could be identified from the analysis of video-derived respiratory information. Continuous vital-sign monitoring supported by non-contact video camera estimates could be used to track early signs of physiological deterioration during post-operative care.

3.
Anesth Analg ; 127(4): 960-966, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30096079

RESUMO

BACKGROUND: Data smoothing of vital signs has been reported in the anesthesia literature, suggesting that clinical staff are biased toward measurements of normal physiology. However, these findings may be partially explained by clinicians interpolating spurious values from noisy signals and by the undersampling of physiological changes by infrequent manual observations. We explored the phenomenon of data smoothing using a method robust to these effects in a large postoperative dataset including respiratory rate, heart rate, and oxygen saturation (SpO2). We also assessed whether the presence of the vital sign taker creates an arousal effect. METHODS: Study data came from a UK upper gastrointestinal postoperative ward (May 2009 to December 2013). We compared manually recorded vital sign data with contemporaneous continuous data recorded from monitoring equipment. We proposed that data smoothing increases differences between vital sign sources as vital sign abnormality increases. The primary assessment method was a mixed-effects model relating continuous-manual differences to vital sign values, adjusting for repeated measurements. We tested the regression slope significance and predicted the continuous-manual difference at clinically important vital sign values. We calculated limits of agreement (LoA) between vital sign sources using the Bland-Altman method, adjusting for repeated measures. Similarly, we assessed whether the vital sign taker affected vital signs, comparing continuous data before and during manual recording. RESULTS: From 407 study patients, 271 had contemporaneous continuous and manual recordings, allowing 3740 respiratory rate, 3844 heart rate, and 3896 SpO2 paired measurements for analysis. For the model relating continuous-manual differences to continuous-manual average vital sign values, the regression slope (95% confidence interval) was 0.04 (-0.01 to 0.10; P = .11) for respiratory rate, 0.04 (-0.01 to 0.09; P = .11) for heart rate, and 0.10 (0.07-0.14; P < .001) for SpO2. For SpO2 measurements of 91%, the model predicted a continuous-manual difference (95% confidence interval) of -0.88% (-1.17% to -0.60%). The bias (LoA) between measurement sources was -0.74 (-7.80 to 6.32) breaths/min for respiratory rate, -1.13 (-17.4 to 15.1) beats/min for heart rate, and -0.25% (-3.35% to 2.84%) for SpO2. The bias (LoA) between continuous data before and during manual observation was -0.57 (-5.63 to 4.48) breaths/min for respiratory rate, -0.71 (-10.2 to 8.73) beats/min for heart rate, and -0.07% (-2.67% to 2.54%) for SpO2. CONCLUSIONS: We found no evidence of data smoothing for heart rate and respiratory rate measurements. Although an effect exists for SpO2 measurements, it was not clinically significant. The wide LoAs between continuous and manually recorded vital signs would commonly result in different early warning scores, impacting clinical care. There was no evidence of an arousal effect caused by the vital sign taker.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório , Monitorização Fisiológica/métodos , Cuidados Pós-Operatórios/métodos , Processamento de Sinais Assistido por Computador , Sinais Vitais , Biomarcadores/sangue , Alarmes Clínicos , Bases de Dados Factuais , Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Frequência Cardíaca , Humanos , Monitorização Fisiológica/instrumentação , Oxigênio/sangue , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Taxa Respiratória , Estudos Retrospectivos , Reino Unido
4.
Ann Intensive Care ; 6(1): 24, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27025951

RESUMO

BACKGROUND: The changes in metabolic pathways and metabolites due to critical illness result in a highly complex and dynamic metabolic state, making safe, effective management of hyperglycemia and hypoglycemia difficult. In addition, clinical practices can vary significantly, thus making GC protocols difficult to generalize across units.The aim of this study was to provide a retrospective analysis of the safety, performance and workload of the stochastic targeted (STAR) glycemic control (GC) protocol to demonstrate that patient-specific, safe, effective GC is possible with the STAR protocol and that it is also generalizable across/over different units and clinical practices. METHODS: Retrospective analysis of STAR GC in the Christchurch Hospital Intensive Care Unit (ICU), New Zealand (267 patients), and the Gyula Hospital, Hungary (47 patients), is analyzed (2011-2015). STAR Christchurch (BG target 4.4-8.0 mmol/L) is also compared to the Specialized Relative Insulin and Nutrition Tables (SPRINT) protocol (BG target 4.4-6.1 mmol/L) implemented in the Christchurch Hospital ICU, New Zealand (292 patients, 2005-2007). Cohort mortality, effectiveness and safety of glycemic control and nutrition delivered are compared using nonparametric statistics. RESULTS: Both STAR implementations and SPRINT resulted in over 86 % of time per episode in the blood glucose (BG) band of 4.4-8.0 mmol/L. Patients treated using STAR in Christchurch ICU spent 36.7 % less time on protocol and were fed significantly more than those treated with SPRINT (73 vs. 86 % of caloric target). The results from STAR in both Christchurch and Gyula were very similar, with the BG distributions being almost identical. STAR provided safe GC with very few patients experiencing severe hypoglycemia (BG < 2.2 mmol/L, <5 patients, 1.5 %). CONCLUSIONS: STAR outperformed its predecessor, SPRINT, by providing higher nutrition and equally safe, effective control for all the days of patient stay, while lowering the number of measurements and interventions required. The STAR protocol has the ability to deliver high performance and high safety across patient types, time, clinical practice culture (Christchurch and Gyula) and clinical resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...